RAM Replay Webinar Dr. Justin Sanchez Program Manager, Biological Technologies Office 5/5/2015 #### **DARPA BAA PROCESS** # Michael Mutty DARPA Contract Management Office May 5, 2015 ## READ THE BAA - DRAFTING THE BAA - Words are Meaningful - Must and Shall - May - Technical vs Administrative - Technical Leads to "Selectable" - Administrative Leads to Contract Award - Cost Proposal - IP Assertions #### **BAA PROCESS** - PROPOSAL PREPARATION/SUBMISSION - Instructions are detailed in the BAA (Follow closely) - ALL questions to DARPA-BAA-15-34@darpa.mil - FAQ (including today's) will be available on the BTO Solicitations Page (http://www.darpa.mil/Opportunities/Solicitations/BTO_Solicitations.aspx) (Read Regularly) - Funding instruments = procurement contract(s), other transactions, assistance instruments (grants, cooperative agreements) - Assert rights to <u>all</u> technical data & computer software generated, developed, and/or delivered to which the Government will receive less than Unlimited Rights - If you don't justify your proposed costs, we can't justify awarding you a contract. - Pay close attention to cost proposal instructions #### **BAA PROCESS** #### EVALUATION/AWARD - Read Evaluation Criteria Carefully - Government reserves the right to select for award all, some, or none of the proposals received. - Government anticipates making multiple awards - No common Statement of Work Proposals evaluated on individual merit and relevance as it relates to the stated research goals/objectives rather than against each other - Overview of the Process - 3 Government Reviewers - PM Recommendation to the SRO - Notification #### **RAM Replay Webinar** Dr. Justin Sanchez Program Manager, Biological Technologies Office 5/5/2015 ### The Military Brain Restoring Active Memory (RAM) #### Under extraordinary stress #### Subject to extraordinary injury Restoring Active Memory: Replay # Controlling complex systems for complex missions # Learning complex tasks and concepts #### Foundations of Memory Research at DARPA Demonstration in Rodents Increased Complexity in Primates Restoration in Injured Humans Application across Skill Learning Human Assisted Neural Devices (HAND) © ratfancy.weebly.com Restorative Encoding Memory Integrative Neural Device (REMIND) © Wikipedia Restoring Active Memory (RAM) © www.alcen.com **RAM Replay** © US Air Force © US Military Academy #### Needs Gaps: Current Approaches ## Accelerated Program - 24 month, single Phase program - Proposers should provide intermediary deliverable milestones ## General Purpose Program - Benefit not restricted to medical or rehabilitation settings - Neuroscience for everyday use ### Specific, Transformative Goals - Precision identification of both specific mechanisms that lead to improvements and deficits in skilled learning and quantification of the contribution of each mechanism - Demonstration of environments for measurement, acquisition, and demonstration of skill learning that go beyond computerbased testing and provide real-world relevant testbeds ## **DARPA** RAM: Replay Technical Areas | Technical Area One: | Technical Area Two: | |--|--| | Development and Parameterization of Development of an Assay for Assess Computational Models of Memory Replay Enabling, and Improving Memory in | | | | | | | | | Identification of Factors Contributing to Memory | Ensuring Relevance to Skill Learning and Task Performance through Generating New Paradigms | | Defining, Evaluating, and Demonstrating Direct and Surrogate Measures | Expanding Novel, Immersive Platforms for Training | | Constructing Methods to Instantiate Models both Offline and in Real-Time | Demonstrating Utility of Assay as an Intervention to Assess, Enable, and Improve Memory Replay | | Validating Models with Real-World Data | Qualifying and Improving Assay Validity and Stability | # **DARPA** Metrics by Technical Area | Technical
Area | Requirement | Metrics | |-------------------|--------------------|---| | TA1 | Environmental | Identify and quantify confounders, effects, and cues Integrate cues into toolboxes Produce parameters of an intervention and predict behavioral performance | | | Physiological | Identify non-neural state or signal relevant to memory formation Demonstrate ability to relate states and signals to memory consolidation, recall, and replay Produce parameters of an intervention and predict behavioral performance | | | Neurophysiological | Identify and quantify states, spatial brain targets, and spatiotemporal patterns related to skill acquisition, memory formation, and replay Identify and quantify consistency and generalizability of neural replay features Determine influence of sequences on parameters of replay Produce parameters of an intervention and predict behavioral performance | | | Sleep/Wake State | Identify optimal sleep states, and brain state parameters for memory replay Determine competing brain states to replay during awake behavior Produce parameters of an intervention and predict behavioral performance | | | Human Performance | Develop and validate a behavioral paradigm to enable memory acquisition and assessment of memory recall and use Demonstrate effect of current and prior experiences on memory Differentiate the effects of replay parameters on subsequent task performance Predict behavioral performance and recall of an episodic memory and/or utilization of learned information in a complex task | | TA2 | Paradigm | Develop a virtual or real situational paradigm enabling human participants to experience DoD-relevant events involving interaction between one or more real or virtual individuals Enable the assessment and reporting of operational events by human participants, the acquisition and use of motor skills in field-relevant tasks, and the learning of new knowledge related to operational scenarios, both prior to and following one or more periods of sleep Assess contributions of complementary and contradictory information on subsequent memory recall or use of learned information required for task performance | | | Intervention | Develop real-time interventions and an interface system to assess, enable, and improve replay in human participants engaged in the paradigm Demonstrate ability of the intervention(s), as delivered through the interface system, to assess, improve, and enable replay through measured physiological and/or neurophysiological effects Demonstrate ability of the intervention interface system to improve memory recall or use | | | Assessment | Develop means of measuring physiological and/or neurophysiological indicators of replay at key points across participation in the paradigm Demonstrate ability to track fidelity of memory replay parameters as a function of time between an event and follow-up memory assessment(s) Compare replay parameters as a function of time between intervention and no-intervention conditions Quantifiably assess the influence of replay parameters on subsequent behavioral performance on a DoD-relevant task |